Convergence for Jacobi elliptic function series solutions to one kind of perturbed Kadomtsev-Petviashvili equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jacobi Elliptic Function Solutions for (2 + 1) Dimensional Boussinesq and Kadomtsev-Petviashvili Equation

(2 + 1) dimensional Boussinesq and Kadomtsev-Petviashvili equation are investigated by employing Jacobi elliptic function expansion method in this paper. As a result, some new forms traveling wave solutions of the equation are reported. Numerical simulation results are shown. These new solutions may be important for the explanation of some practical physical problems. The results of this paper ...

متن کامل

Lump solutions to the Kadomtsev–Petviashvili equation

Article history: Received 31 March 2015 Received in revised form 18 June 2015 Accepted 30 June 2015 Available online 2 July 2015 Communicated by R. Wu

متن کامل

New Explicit Jacobi Elliptic Function Solutions for the Zakharov Equations ⋆

In this letter, some new complex doubly periodic solutions to the Zakharov equations are obtained by using the generalized Jacobi elliptic function expansion method with the aid of mathematica software, some of which are degenerated to the solitary wave solutions and the triangle function solutions in the limit cases when the modulus of the Jacobian elliptic functions m→1 or 0, which shows that...

متن کامل

On the Cauchy-problem for Generalized Kadomtsev-petviashvili-ii Equations

The Cauchy-problem for the generalized Kadomtsev-PetviashviliII equation ut + uxxx + ∂ −1 x uyy = (u )x, l ≥ 3, is shown to be locally well-posed in almost critical anisotropic Sobolev spaces. The proof combines local smoothing and maximal function estimates as well as bilinear refinements of Strichartz type inequalities via multilinear interpolation in Xs,b-spaces. Inspired by the work of Keni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Physica Sinica

سال: 2019

ISSN: 1000-3290

DOI: 10.7498/aps.68.20190333